Генетическая связь неорганических веществ схема. Генетическая связь между основными классами неорганических веществ

  • Сформировать понятие о генетической связи и генетическом ряде.
  • Рассмотреть генетические ряды металлов и неметаллов.
  • Выяснить генетическую связь между классами неорганических соединений.
  • Продолжить формировать умения пользоваться таблицей растворимости и периодической системой Д.И.Меделеева для прогнозирования возможных химических реакций, а также применять полученные знания по темам свойства классов веществ.
  • Повторить основные классы неорганических соединений и их классификацию.
  • Развивать познавательный интерес к предмету, умение быстро и четко отвечать на вопросы.
  • Продолжать формировать умения логически мыслить, работать с учебником, работать с полученной информацией.
  • Закрепить и систематизировать знания по данной теме.

Оборудование: Периодическая система Д.И. Менделеева, кодоскоп, таблица “Кислоты”, схема “Генетическая связь”, карточки для игры “Конвейер”, “Творческое задание”.

Реактивы: В штативах 3 пробирки с растворами HCI, NaCI, NaOH, универсальная индикаторная бумажка. На столе учителя: Na, H 2 O кристаллизаторе, фенолфталеин, H 2 SO 4 .

Класс разбит на 4 микрогруппы: “Оксиды”, “Кислоты”, “Соли”, “Основания”.

Ход урока

I. Организационный момент.

1. Дисциплина.
2. Готовность класса к уроку.
3. Постановка цели урока, мотивация.

II. Основная часть.

1. Целевая установка урока

Другого ничего в природе нет
Ни здесь, ни там в космических глубинах.
Все – от песчинок малых – до планет
Из элементов состоит единых.

Как формула, как график трудовой,
Строй менделеевской системы строгой,
Вокруг тебя творится мир живой,
Входи в него руками трогай.

Сегодня мы собрались здесь, чтобы подвергнуть испытанию лучших восьмиклассников нашей школы и ответить на вопрос: “Достойны ли они, стать гражданами великой химической страны?” Страна эта древняя и волшебная, хранящая множество загадок. Отгадать многие из них еще не удавалось ни одному человеку. Лишь самым, умным, смелым и настойчивым эта страна приоткрывает свои тайны. Итак, начнем!

Итак, изучив тему “Важнейшие классы неорганических соединений” вы получили представление о том, что неорганические соединения многообразны и взаимосвязаны. На уроке мы с вами рассмотрим небольшие фрагменты взаимопревращений веществ, вспомним классификацию неорганических веществ, поговорим о единстве и многообразии химических веществ.

Задача нашего урока – обобщить сведения о веществах, об отдельных классах неорганических соединений и их классификации в целом, закрепить знания о генетических рядах, генетической связи, взаимодействии вещества разных классов, научиться умению применять знания на практике.

Запишите в тетрадях тему нашего урока “Генетическая связь между неорганическими соединениями”.

Но, сначала скажите о каких веществах идет речь (название, формула)?

  1. На суку сидит сова,
    Выдыхает _____________________________
  2. Сапоги мои того,
    Пропускают ___________________________
  3. Его все знают,
    В магазине покупают,
    Без него не сваришь ужин -
    В малых дозах в блюдах нужен ___________
  4. Флакон с веществом, обычно имеется в каждой квартире,
    С рожденья ребенок любой с ним знаком,
    Едва лишь покинет он с мамой роддом,
    Ею искупают в ванночке с _________
  5. Что за чудо посмотри,
    По доске он проезжает,
    За собой след оставляет. ____________________
  6. Если нет у вас для теста разрыхлителя
    вы вместо него.
    Положите в пироги. ________________________

Переведите с химического языка на

  1. Не все то аурум, что блестит.
  2. Куй феррум, пока горячо.
    _____________________________________________________________
  3. Слово – аргентум, а молчание – аурум.
    _____________________________________________________________
  4. 5.Купрумного гроша не стоит.
    _____________________________________________________________
  5. Стойкий станумный солдатик.
    _____________________________________________________________
  6. С тех пор много Н 2 О утекло.
    _____________________________________________________________

Все эти вещества относятся, к какому то классу неорганических веществ. Ответьте на вопрос:

– Как распределяются по классам на основе состава и свойств неорганические вещества?
– Назовите известные вам классы неорганических соединений

По микрогруппам:

– Дайте определения.
Ученики дают определения веществам.

Классификация данных классов веществ.
Ученики дают ответы.

На слайде:

Из предложенного перечня неорганических соединений выберите формулы:
1 группа – оксиды,
2 группа – кислоты,
3 группа – соли.
4 группа – основания.

Назовите эти вещества.

Ученики выполняют задание в тетрадях по микрогруппам.

Правильный ответ:

А теперь поиграем с вами в игру “крестики – нолики”.

Слайд 19. Приложения 1.

Распределите вещества, формулы которых приведены в таблице по классам. Из букв, соответствующим правильным ответам, получите фамилию великого русского ученого

Формулы Оксиды Кислоты Основания Соли
K 2 O М А Ш А
H 2 CO 3 П Е Т Р
P 2 O 5 Н И М А
CuSO 4 П О С Д
Ca(OH) 2 Л И Е С
Fe(NO 3) 3 А Н У Л
SO 2 Е Л З А
H 3 PO 4 Н Е Л С
Na 3 PO 4 Ч У М В

Ответ: Менделеев.

Проблемное задание.

Могут ли разные классы неорганических соединений взаимодействовать друг с другом?

Выделить признаки генетического ряда:

Ca Ca(OH) 2 CaCO 3 CaO CaSO 4 CaCl 2 Ca ?

  1. вещества разных классов;
  2. разные вещества образованы одним химическим элементом;
  3. разные вещества одного химического элемента связаны взаимопревращениями.

Между классами существует важная связь, которую называют генетической ("генезиз" по-гречески обозначает "происхождение"). Эта связь заключается в том, что из веществ одного класса можно получить вещества других классов.

Генетическим называют ряд веществ – представителей разных классов неорганических соединений, являющихся соединениями одного и того же химического элемента, связанного взаимопревращениями и отражающего общность происхождения этих веществ.

Генетический ряд отражает взаимосвязь веществ разных классов, в основу которых положен один и тот же химический элемент.

Генетическая связь – связь между веществами разных классов, образованных одним химическим элементом, связанных взаимопревращениями и отражающая единство их происхождения.

Существует два основных пути генетических связей между веществами: один из них начинается металлами, другой – неметаллами.
Среди металлов также можно выделить две разновидности рядов:

1. Генетический ряд, в котором в качестве основания выступает щелочь. Этот ряд можно представить с помощью следующих превращений:

металл--основный оксид--щелочь–соль

Например: K--K 2 O--KOH--KCl.

2 . Генетический ряд, где в качестве основания выступает нерастворимое основание, тогда ряд можно представить цепочкой превращений:

металл--основный оксид--соль--нерастворимое основание--основный оксид--металл.

Например: Cu--CuO--CuCl 2 --Cu(OH) 2 --CuO-->Cu

Среди неметаллов также можно выделить две разновидности рядов:
1 . Генетический ряд неметаллов, где в качестве звена ряда выступает растворимая кислота.

Цепочку превращений можно представить в следующем виде:
неметалл--кислотный оксид--растворимая кислота--соль.

Например:
P--P 2 O 5 --H 3 PO 4 --Na 3 PO 4 .
2 . Генетический ряд неметаллов, где в качестве звена ряда выступает нерастворимая кислота:
неметалл--кислотный оксид--соль--кислота--кислотный оксид–неметалл

Например: Si--SiO 2 --Na 2 SiO 3 --H 2 SiO 3 --SiO 2 --Si.

Осуществить превращения по микрогруппам.

Физкультминутка “Рыжий кот”.

Решение задачи.

Однажды Юх проводил эксперименты по измерению электропроводности растворов разных солей. На его лабораторном столе стояли химические стаканы с растворами KCl, BaCl 2 , K 2 CO 3 , Na 2 SO 4 и AgNO 3 . На каждом стакане была аккуратно приклеена этикетка. В лаборатории жил попугай, клетка которого запиралась не очень хорошо. Когда Юх, поглощенный экспериментом, оглянулся на подозрительный шорох, он с ужасом обнаружил, что попугай, грубо нарушая правила техники безопасности, пытается пить из стакана с раствором BaCl 2 . Зная, что все растворимые соли бария чрезвычайно ядовиты, Юх быстро схватил со стола стакан с другой этикеткой и насильно влил раствор в клюв попугаю. Попугай был спасен. Стакан с каким раствором был использован для спасения попугая?

BaCl 2 + Na 2 SO 4 = BaSO 4 (осадок) + 2NaCl (сульфат бария настолько малорастворим, что не способен быть ядовитым, как некоторые другие соли бария).

Демонстрационный эксперимент. Учитель показывает в пробирках образцы:

1 – кусочек кальция, 2 – негашеная известь, 3 – гашеная известь, 4 – гипс задает вопрос:

“Что общего между этими образцами?” и записывает цепочку из формул представленных образцов.

Ca CaO Ca(OH) 2 CaSO 4

Хорошо, ребята! Подумайте, как с помощью химических реакций можно перейти от простого вещества к сложному, от одного класса соединений к другим. Давайте проведем эксперимент, доказывающий присутствие атомов меди в разных ее соединениях. По ходу эксперимента запишите цепочку превращений. Назовите типы химических реакций.

Работа выполняется по инструктивной карте.

Соблюдайте правила техники безопасности!

Инструктивная карта.

Лабораторная работа: “Практическое осуществление цепочки химических превращений”.

Проверьте наличие оборудования и реактивов на рабочих местах.

Оборудование: штатив для пробирок, спиртовка, спички, зажим для пробирок, тигельные щипцы.

Реактивы и материалы: раствор соляной кислоты (1:2), медная проволока, железный гвоздь или скрепка, нитки.

Выполнение работы.

Проведите реакции, в которых осуществляются химические превращения.

Медная проволока оксид меди(II) хлорид меди(II) медь

Прокаливайте медную проволоку, удерживая ее тигельными щипцами, в верхней части пламени спиртовки (1–2мин). Что наблюдаете?

Аккуратно удалите черный налет с проволоки и поместите его в пробирку. Отметьте цвет вещества.

Прилейте в пробирку в пробирку 1 мл раствора соляной кислоты (1:2). Для ускорения реакции слегка нагрейте ее содержимое. Что наблюдаете?

Осторожно (почему?) погрузите в пробирку с раствором железный гвоздь (скрепку).

Через 2–3 мин извлеките гвоздь из раствора и опишите произошедшие с ним изменения.

Образованием какого вещества они вызваны?

Опишите и сравните цвет образовавшегося и исходного растворов.

Приведите рабочее место в порядок.

Внимание! Раствор с оксидом меди нагревать очень осторожно, держа пробирку высоко над пламенем спиртовки.

III. Заключение.

Учитель. Понятия “оксид”, “кислота”, “основание”, “соль” образуют систему, находящуюся в тесной взаимосвязи, она раскрывается при получении веществ одного класса из веществ другого класса. Она проявляется в процессе взаимодействия веществ и активно используется в практической деятельности человека. Как вы думаете, ребята, достигли мы цели, которую ставили в начале урока?

V. Домашнее задание.

Слайды 30, 31.

VI. Подведение итогов урока, оценивание, рефлексия.

Учитель. Ребята, пришло время подводить итоги. Чему вы сегодня научились, что узнали нового, что вы делали на уроке?

Ученики дают ответы.

>> Химия: Генетическая связь между классами органических и неорганических веществ

Материальный мир. в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ представителей разных классов, являющихся соединениями одною химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь - понятие более общее, чем генетический ряд. который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит н первый прицеленный в тексте параграфа ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:

II. Генетический ряд неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6.

Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окнелгнного соединения элементе, нужно взять для атой цели самое восстановленное его соединение, например летучее водородное соединение неметалла .

III. Генетический ряд металла, которому соответствуют амфотерные оксид и гндроксид, очень богат саязями. так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд цинка:

В органической химии также следует различать более общее понятие - генетическая связь и более частное понятие генетический ря. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в кото-рый включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное урнпненне реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Иод определение генетического ряда не подходит последний переход - образуется продукт не с двумя, и с множеством углеродных атомов, но аато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества.

Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:
1. Обжиг известняка:

1. Запишите уравнения реакций, иллюстрирующих следующие переходы:

3. При взаимодействии 12 г предельного одноатомного спирта с натрием выделилось 2.24 л водорода (н. у.). Найдите молекулярную формулу спирта и запишите формулы возможных изомеров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Генетической связью между веществами называется такая связь, которая основывается на их взаимопревращениях, она отражает единство происхождения веществ, другими словами – генезис.

Обладая знаниями о классах простых веществ, можно выделить два генетических ряда:

1) Генетический ряд металлов

2) Генетический ряд неметаллов.

Генетический ряд металлов раскрывает взаимосвязанность веществ разных классов, в основу которой положен один и тот же металл.

Генетический ряд металлов бывает двух видов.

1. Генетический ряд металлов, которым в качестве гидроксида соответствует щелочь. Такой ряд может быть представлен подобной цепочкой превращений:

металл → основной оксид → основание (щелочь) → соль

Возьмем для примера генетический ряд кальция:

Ca → CaO → Ca(OH) 2 → Ca 3 (PO 4) 2 .

2. Генетический ряд металлов, которым соответствуют нерастворимые основания. В данном ряде больше генетических связей, т.к. он более полно отражает идею прямых и обратных превращений (взаимных). Такой ряд можно изобразить очередной цепочкой превращений:

металл → основной оксид → соль → основание → основной оксид → металл.

Возьмем для примера генетический ряд меди:

Cu → CuO → CuCl 2 → Cu (OH) 2 → CuO → Cu.

Генетический ряд неметаллов раскрывает взаимосвязь веществ различных классов, в основе которых лежит один и тот же неметалл.

Давайте выделим еще две разновидности.

1. Генетический ряд неметаллов, которым в качестве гидроксида соответствует растворимая кислота, может быть изображен в виде следующей линии превращений:

неметалл → кислотный оксид → кислота → соль.

Возьмем для примера генетический ряд фосфора:

P → P 2 O 5 → H 3 PO 4 → Ca 3 (PO 4) 2 .

2. Генетический ряд неметаллов, которым соответствует нерастворимая кислота, может быть изображен очередной цепочкой трансформаций:

неметалл → кислотный оксид → соль → кислота → кислотный оксид → неметалл.

Поскольку из рассмотренных нами кислот нерастворимой является исключительно кремниевая кислота, давайте рассмотрим в качестве примера генетический ряд кремния:

Si → SiO 2 → Na 2 SiO 3 → H 2 SiO 3 → H 2 SiO 3 → SiO 2 → Si.

Итак, давайте подведем итоги и выделим самую основную информацию.

Целосность и разнообразие химических веществ наиболее выражено изображены в генетической связи веществ, которая раскрывается в генетических рядах. Рассмотрим самые важные признаки генетических рядов:

Генетические ряды – это группа органических соединений, у которых равное число атомов углерода в молекуле, различающихся функциональными группами.

Генетическая связь – более общее понятие, в отличие от генетического ряда, который пусть и является достаточно ярким, но в тоже время частным проявлением данной связи, которая может происходить при любых двусторонних превращениях веществ.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Генетическая связь - это связь между веществами разных классов, основанная на их взаимопревращениях и отражающая единство их происхождения, т. е. генезис веществ. Из простых веществ можно получить сложное вещество.С сложного вещества можно получить простые вещества.

Генетическая связь отражается в генетических рядах.

Характерные признаки генетических рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Среди металлов можно выделить две разновидности рядов:

1. Генетический ряд, в котором в качестве основания выступает щёлочь. Этот ряд можно представить с помощью следующих превращений:

металл→основный оксид→щёлочь→соль (Например: K→K 2 O→KOH→KCl)

2Генетический ряд металлов, которым соответствуют нерастворимые основания. В данном ряде больше генетических связей, т.к. он более полно отражает идею прямых и обратных превращений (взаимных).

металл → основной оксид → соль → основание → основной оксид → металл.

(Например Cu → CuO → CuCl 2 → Cu (OH) 2 → CuO → Cu.)

Среди неметаллов также можно выделить две разновидности рядов:

1. Генетический ряд неметаллов, где в качестве звена ряда выступает растворимая кислота.

неметалл→кислотный оксид→растворимая кислота→соль

(Например: P→P 2 O 5 →H 3 PO 4 →Са 3 (PO 4) 2)

2. Генетический ряд неметаллов, где в качестве звена ряда выступает нерастворимая кислота:

неметалл→кислотный оксид→соль→кислота→кислотный оксид→неметалл

Например: Si→SiO 2 →Na 2 SiO 3 →H 2 SiO 3 →SiO 2 →Si

(можно рассматривать ряд как с одной, так и с другой стороны)

Квантово - механическая модель атома.уравнения де Бройля и Шредингера, принцип неопределенности Гейзенберга. Атомнаяорбиталь. квантовые числа

В основу КММ положена квантовая теория атома, согласно которой электрон обладает как свойствами частицы, так и свойствами волны. Другими словами, о местоположении электрона в определенной точке можно судить не точно, а с определенной долей вероятности. Поэтому в КММ орбиты Бора заменили орбиталями (эдакие "электронные облака" - области пространства в которых существует вероятность пребывания электрона).


Главное квантовое число n

Описывает:

· среднее расстояние от орбитали до ядра;

· энергетическое состояние электрона в атоме.

Чем больше значение n, тем выше энергия электрона и больше размер электронного облака. Если в атоме несколько электронов с одинаковым n, то они образуют электронные облака одинакового размера - электронные оболочки .

Орбитальное квантовое число l (азимутальное)

Описывает форму орбитали , которая зависит от n.

Орбитальное число l может принимать целочисленные значения в диапазоне от 0 до n-1. Например, при n=2: l=0 l=1
Орбитали, имеющие одинаковое n, но разные l называют энергетическими подуровнями и обозначают буквами латинского алфавита:

Магнитное квантовое число m